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Principal component analysis (PCA) was applied to datasets gathering morphological, physiological and
reactor performance information, from three toxic shock loads (SL1 - 1.6 mggetergent/L; SL2 - 3.1
MEetergent/L; SL3 - 40 mgsoivent/L) applied in an expanded granular sludge bed (EGSB) reactor. The PCA
allowed the visualization of the main effects caused by the toxics, by clustering the samples according
to its operational phase, exposure or recovery. The aim was to investigate the variables or group of
variables that mostly contribute for the early detection of operational problems. The morphological
parameters showed to be sensitive enough to detect the operational problems even before the COD
removal efficiency decreased. As observed by the high loadings in the plane defined by the first and
second principal components. PCA defined a new latent variable t[1], gathering the most relevant
variability in dataset, that showed an immediate variation after the toxics were fed to the reactors.
t[1] varied 262%, 254% and 80%, respectively, in SL1, SL2 and SL3. The high loadings/weights of the mor-
phological parameters associated with this new variable express its influence in shock load monitoring
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and control, and consequently in operational problems recognition.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In the last decades, the anaerobic wastewater treatment tech-
nology emerged to beat against the well established activated
sludge process for wastewater treatment. The development of
high-rate reactors, using anaerobic granular sludge, was the key
feature that allowed for a great increase in the use of anaerobic
technology for the treatment of a growing variety of industrial
wastewaters (Lettinga, 1995). Uncoupling the hydraulic retention
time from the solids retention time allows the application of high
organic loading rates, making possible the use of compact and eco-
nomical wastewater treatment plants. Although all the advantages
associated with this technology, due to its highly specialized char-
acter, the microorganisms involved in the process are very sensi-
tive to disturbances of the normal operational conditions. A
frequent problem is the contamination by toxic compounds. Due
to the slow start-up of anaerobic wastewater treatment processes
this problems can be transformed in several weeks to several
months necessary for the reactor to recover if the appropriate mea-
sures/actions are not taken in time. Therefore, stable operation of
high-rate anaerobic reactors is an essential but difficult task be-
cause of the complicated nature of the anaerobic process itself.
Monitoring and control are therefore extremely important to im-
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prove process robustness by detecting disturbances leading to
abnormal process operation. In this context, identification of pro-
cess variables potentially useful as early alert detectors of instabil-
ity has major relevance.

Industrial wastewaters that are treated by anaerobic digestion
processes are frequently affected by temporary toxic exposures.
Detergents (Gavala and Ahring, 2002) and solvents (Enright et al.,
2005), from cleaning stages, are some of that compounds that
can deteriorate the performance of those processes.

An important factor for the efficient operation of anaerobic pro-
cesses, extensively studied in the last decade, is the recognition of
parameters that could be used for monitoring and control of the
process. Parameters in the solid phase are not often used for auto-
matic monitoring and control since they usually need manual
operations, and are usually qualitative and inaccurate. Therefore,
so far, parameters used for control have been limited to indicators
of the liquid and the gaseous phases, such as pH, volatile fatty acids
(VFA), alkalinity, COD concentrations, carbon dioxide, methane and
hydrogen contents in the biogas as well as biogas production (Van
Lier et al., 2001). In this framework, quantitative image analysis
techniques emerge as a promising tool to overcome these difficul-
ties, providing quantitative parameters of the solid phase dynam-
ics. Image analysis has become a very important tool with a large
field of applications in study of biomass morphology, due to its
ability to remove the subjectiveness of human analysis, the possi-
bility to extract quantitative data and avoid tedious and highly
time-consuming tasks to human researchers (Amaral, 2003).
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Because the experimental approach of integrating reactor per-
formance, physiological and morphological data may produce cor-
related and redundant data, a statistical instrument should be
applied in order to extract the essential information for process
monitoring and fault detection applications. Often, important
information lies not in any individual variable but in how the vari-
ables change with respect to one another, i.e., how they co-vary
(Wise and Gallagher, 1996). Data reduction and interpretation
can be approached through the application of multivariate statisti-
cal methods, such as principal components analysis (PCA). This
method allows identifying patterns in data, and expressing them
in order to highlight their similarities and differences. PCA is a pro-
jection method for analyze data and reduce it from an n-dimen-
sional space to few latent/hidden variables (Lee et al., 2006),
while keeping information on its variability. It has been success-
fully applied to the monitoring of industrial processes (Li et al.,
2000; MacGregor and Koutodi, 1995) and wastewater treatment
processes (Lee et al., 2004; Lee and Vanrolleghem, 2004; Rosen,
2001). Since patterns in data can be hard to find in data of high
dimension, where graphical representation is not available, the
possibility of grouping the variability in few variables is an impor-
tant step to visualize and consequently analyze the information.
PCA is a very useful tool to group samples according to its charac-
teristics and detection of the variables with higher influence in that
grouping as stated in several works (Zbytniewski and Buszewski,
2005; Abouelwafa et al., 2008; Fuentes et al., 2008; Gil et al., 2008).

Previously, three toxic shock loads were applied to lab-scale ex-
panded granular sludge bed (EGSB) reactors (Costa et al., 2007).
The corresponding effects were monitored by quantitative image
analysis, specific methanogenic activity tests and reactor perfor-
mance. In the present study, the multivariate statistical tool PCA
was applied in order to highlight patterns, groups, trends and out-
liers in the data. In addition, it was employed to identify the vari-
ables that mostly reflect the shock load effects, and respective
operational changes/problems recognition.

2. Methods
2.1. Toxics characterization

The contaminants tested consisted in industrials detergent and
solvent used as cleaning agents. The detergent presents a relative
density of 1.04 (at 20 °C), pH (81% solution at 20 °C) of 11.4, and
chemical oxygen demand (COD) of 98 g/L. It is composed by glycol
ether (1-10%), anionic surfactant (1-10%), performance additives
(1-10%), dyes (<1%), and water (>60%). The solvent is a mixture
of saturated aliphatic and alicyclic C7 to C12 hydrocarbons with
a maximum content of 25% of C7 to C12 alkyl aromatic hydrocar-
bons. It presents a specific mass (15 °C) of about 0.785 kg/m°.

2.2. Operational conditions

Three shock loads were applied to expanded granular sludge
bed (EGSB) reactors. In the two first shock loads, SL1 and SL2, a
detergent was fed to the reactor with a concentration of 1.6 and
3.1 mg/L, respectively (Costa et al., 2007). In the third shock load
(SL3) 40 mg/L of solvent was fed to the EGSB reactor (Table 1).

The EGSB reactor consisted in a Plexiglas column with a height
of 1.95 m and internal diameter of 21 mm. The working volume
was 1.15 L, and the superficial velocity was 4.0 + 0.1 m/h. Temper-
ature was kept at 37 + 1 °C by means of an external jacket for water
circulation.

Anaerobic granular sludge was collected in a full-scale EGSB
reactor from a brewery to inoculate and a lab-scale EGSB reactor
treating a synthetic effluent, with ethanol as sole organic carbon

Table 1

Shock loads conditions

Shock load SL1 SL2 SL3

VSS (g/L) 22.0 34.0 26.5
SAA (MLCHestp/gVSS d) 150 + 22 141+8 212 +£27
SHMA (mLCHa4@stp/gVSS d) 833 +136 1028 + 103 910+ 85
LfA (mm~") 30 18 24
TL/VSS (m/gyss) 1585 1238 1800
VSS/TA (g/m?) 19 27 13

vsed (m/h) 30+9 31+10 26+ 14
HRT (h) 7.8 7.5 8.0
Ethanol (gcop/L) 1.5 1.5 1.5
Toxic Detergent Detergent Solvent
Concentration (mg/L) 1.6 3.1 40
Exposure phase (h) 56 222 222
Recovery phase (days) 14 12 7

source. Afterwards, 400 mL of the lab-scale reactor biomass was
used as the inoculum of the EGSB reactors used in these experi-
ments. The inoculum was characterized in terms of morphology,
specific acetoclastic activity (SAA) and specific hydrogenotrophic
methanogenic activity (SHMA), settling velocity (vsed), and vola-
tile suspended solids (VSS) (Table 1). Ethanol was fed at a concen-
tration of 1.5 gcop/L. Sodium bicarbonate was added as the
alkalinity source (3 g/L) and macro- and micronutrients were
added according to Zehnder et al. (1980).

2.3. Datasets

Variables summarizing the morphological, physiological and
performance data obtained during the experiments were grouped
to create the datasets used to perform the PCA (Table 2). Four data-
sets were created, one for each disturbance, and one integrating
the data from all shock loads.

2.4. Principal components analysis

PCA aims at finding and interpreting hidden complex, and pos-
sibly causally determined, relationships between features in a
dataset. Correlating features are converted to the so-called factors
which are themselves noncorrelated (Einax et al., 1997). PCA mod-
eling, i.e., the approximation of a matrix by a model, defined by

Table 2
Variables included in dataset, summarizing the changes occurred during shock loads

Variable Name

Reactor performance data:

OLR Organic loading rate

Cdet Detergent concentration (datasets 1 and 2)

Csol Solvent concentration (dataset 3)

Tox Toxic concentration (detergent or solvent) (dataset 4)
Eff Chemical oxygen demand (COD) removal efficiency
pH pH

VSS Effluent volatile suspended solids

Physiological data:
SAA Specific acetoclastic activity
SHMA Specific hydrogenotrophic methanogenic activity

Morphological data:
LfA Total filaments length per total aggregates projected area

TL/VSS Total filaments length per volatile suspended solids

VSS/TA  VSS per total aggregates projected area (apparent granules density)

>1 Percentage of aggregates projected area with equivalent diameter
(Deq) = 1 mm

>0.1 Percentage of aggregates projected area within the range 0.1 < Deq
(mm)<1

<0.1 Percentage of aggregates projected area with Deq < 0.1 mm

vsed Settling velocity
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variables and a relatively small number of outer vector products,
shows the correlation structure of a data matrix X, approximating
it by a matrix product of lower dimension (T x P'), called the prin-
cipal components (PC), plus a matrix of residuals (E):

X=1xX+TxP+E

where, the term 1 x X’ represents the variable averages. The second
term, the matrix product T x P’, models the structure and the third
term, E, contains the deviations between the original values and the
projections, i.e., the noise. T is a matrix of scores that summarizes
the X-variables (scores), and P is a matrix of loadings showing the
influence of the variables on each score. Geometrically, it corre-
sponds to fitting a line, plane, or hyper plane to the data in the mul-
tidimensional space, with the variables as axes. The scaling of the
variables specifies the length of the axes of this space.

SIMCA-P (Umetrics AB) software package was used to perform
the PCA. The first step of the analysis consists in the pre-treatment
of data by standardization of the variables, i.e., guarantee that each
individual variable has about the same range, avoiding that some
variables would be more important than others because of scale ef-
fects. During this work each variable was autoscaled by

Xij 7)_6,']'

where, x;; is the value of the variable j in the sample i, X; and s; are
the mean and the standard deviation of the variable j, respectively,
and, z;; is the autoscaled value of x;;. At the end of this standardiza-
tion, each variable has mean zero and unit standard deviation.
Subsequently, the software iteratively computes one PC at a
time, comprising a score vector t, and a loading vector p,. The score
vectors contain information on how the samples relate to each
other. Otherwise, the loading vectors define the reduced dimension
space and contain information on how the variables relate to each
other. Usually, few PC (2 or 3) can express most of the variability in
the dataset when there is a high degree of correlation among data.
The criterion used to determine the model dimensionality
(number of significant components) was cross validation (CV). Part
of data is kept out of the model development, and then are pre-
dicted by the model and compared with the actual values. The pre-
diction error sum of squares (PRESS) is the squared differences
between observed and predicted values for the data kept out of
the model fitting. This procedure is repeated several times until
data element has been kept out once and only once. Therefore,
the final PRESS has contributions from all data. For every dimen-
sion, SIMCA computes the overall PRESS/SS, where SS is the resid-
ual sum of squares of the previous dimension. A component is
considered significant if PRESS/SS is statistically smaller than 1.0.

3. Results and discussion
3.1. Recognition of shock load effects
Apply a chemometric technique such as PCA is advantageous

when an effective reduction of the multi dimensional space into
few components is accomplished, while keeping the variability of

Table 3

Total datasets variability contained in the firsts principal components

PC SL1 (%) SL2 (%) SL3 (%)
1 65.5 46.3 38.1

2 14.3 239 238

3 9.6 14.6 12.0

4 7.5 7.0 11.2
Cumulative 96.9 91.7 85.1

the dataset. In this study, three PC in detergent shock loads (SL1
and SL2) and four PC in solvent shock load (SL3) gathered more
than 80% of the total variability in the datasets (Table 3).

PCA is very useful in grouping samples according to sludge
characteristics (Abouelwafa et al., 2008). In the score plots of the
first and second PCs, t[1] vs. t[2] (Fig. 1a, c and e) is observed that
the PCA grouped samples according to its operational phase. A
cluster encompassing the observations obtained during exposure
phase is visible in each score plot. Besides, is clearly observed that
a deviation occurred immediately after the shock loads were ap-
plied. The inoculum sample, which emerge as an isolated observa-
tion, is located far from the first observation during exposure time
(see line in Fig. 1a, c and e).

The influence that each measured variable had in each score, is
given by its loadings, i.e., weighted variables, and respective load-
ing maps (Fig. 1b, d and e). It allows decide which variables are
most important for the differences observed between the samples.
The interpretation of the loadings is essentially done by looking at
what variables have the higher coefficients (positive or negative)
on a certain PC. Coupled visualization of score and loading plots
(Fig. 1) allows for the detection of the main effects/problems oc-
curred during the shock loads. For example, the main effects
caused by SL1 were detected in the morphological parameters.
The introduction of the toxic compound in the feeding caused an
increase in LfA and TL/VSS parameters and decrease in VSS/TA
(Fig. 1b). These results suggest changes at the granules microstruc-
ture level with release of filaments and decrease of apparent den-
sity (VSS/TA). However, during reactors operation, the COD
removal efficiency remained unaffected (Costa et al., 2007).

Increasing the detergent concentration (SL2) caused an immedi-
ate decrease in specific acetoclastic activity (SAA) and VSS/TA
(Costa et al., 2007). Analyzing the Fig. 1c is observed that sample
0 (inoculum) is situated in the top of the graph with the higher
score in PC2. Simultaneously, the variables with higher influence
in PC2, were SAA and VSS/TA (Fig. 1d, p[2]). PC1 distinguished sam-
ples during exposure time (positive scores) from samples during
recovery phasef/inoculum (negative scores) (Fig. 1c, t[1]). Once
more, the morphological parameters LfA and >1, were the most
sensitive to recognize the shock load (Fig. 1d, p[1]).

In SL3, the isolation of exposure phase samples is not so effec-
tive using only the first PC, since it gathered just 38.1% of the data-
set variability (Fig. 1e, t[1]). However, analyzing PC1-PC2 plane, a
cluster encompassing these samples is visible. The granules size
distribution (<0.1, >0.1 and >1) show high loadings in PC2
(Fig. 1f, p[2]). Simultaneously, vsed and VSS present high loadings
in PC1 (Fig. 1f, p[1]). Therefore, it is possible to say that these were
the variables with higher influence in clustering the samples. The
reactor performance was constant during the exposure phase with
COD removal efficiency >90%. However, in the last hours of expo-
sure the biogas production and methane content start to decrease.
Afterwards, the efficiency decreased, and 70 h after the shock load
stopped, reached its minimum (<35%). Thus, although the reactor
performance deteriorates only in the last hours of the exposure
phase, a change in the macrostructure of granules was observed
immediately when the shock load was applied. In fact, the % of
aggregates projected area with equivalent diameter (Deq) > 1 mm
decreased from 81 to 53, and the % of aggregates projected area
with 0.1 < Deg(mm) <1 increased from 18% to 46%, indicator of
granules fragmentation and consequent washout (more than
330% increase in the effluent VSS).

Inthe last decade, a vast number of methods to monitoring and/or
control of wastewater anaerobic digestion processes have been pro-
posed with different parameters as indicators of operational prob-
lems (Garcia et al., 2007; Lardon et al., 2005). However, the
integration of morphological parameters has not yet been studied,
mainly because expeditiously and quantitative information is
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Fig. 1. PCA score plot of the first PC (¢[1]) vs. the second PC (t[2]), in dataset of: (a) SL1; (c) SL2; and (e) SL3. And, PCA loading plot of the

(p[1] vs. p[2]), from dataset of: (b) SL1; (d) SL2; and (f) SL3.

difficult to obtain. The use of image analysis techniques, previously
described by Amaral (2003) and Costa et al. (2007), provides quanti-
tative information about the dynamic evolution of the granules mor-
phology at macro and microstructures levels. The use of PCA
illustrates the usefulness of monitoring the granules morphology
to detect possible toxic contamination and future operational prob-
lems. The early detection of these problems is essential to attain
timely control of the process before it evaluates to an irreversible
problem. In this work was visible that morphological changes oc-
curred before reactors performance deterioration, proving the sensi-
tivity of the proposed parameters to detect the toxic contaminations.

PCA provides information on the most meaningful parameters,
which describes a whole dataset affording data reduction with
minimum loss of original information (Helena et al., 2000). It
was applied previously to classify and predict ash and char con-
tent from near infrared spectra collected on different types of bio-
mass (Labbé et al., 2008). In this work, a new latent variable, t[1],

0.20 0.30

1183

first and second principal components

Table 4

Loadings/weights of the variables in datasets associated to the PC1

Variable SL1 SL2 SL3 Notes

OLR 0.295 0.377 0.300 Controlled variable
Cdet 0.295 0.377 - Controlled variable
Csol - - 0.283 Controlled variable

Eff -0.278 0.241 —0.206

pH 0.297 0.253 —0.256

VSS 0.158 —-0.280 0.290

<0.1 0.265 -0.227 0.104 Morphological variable
>0.1 —0.297 -0.329 0.236 Morphological variable
>1 0.293 0.345 —0.241 Morphological variable
SAA -0.194 —-0.030 -0.321

SHMA -0.236 0.003 -0.275

LfA 0.306 0.336 —0.246 Morphological variable
VSS/TA —0.302 0.009 0.164 Morphological variable
TL/VSS 0.313 0.283 -0.316 Morphological variable
vsed -0.126 0.207 —0.384
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components (p[1] vs. p[2]).

was defined that includes a weighted sum of performance, physi-
ological and morphological information. This new variable can be
used as a warning indicator of operational problems during toxic
shock load disturbances. The variable t[1] was calculated for the
inoculum and the first sample of exposure phase and the corre-
sponding % of variation was 262%, 254% and 80%, respectively,
in SL1, SL2 and SL3. This result evidenced the high sensitivity of
the latent variable to recognize deviations of the normal process
operation.

Analyzing the loadings/weights associated with the new latent
variable t[1], it is possible to distinguish the variables that most
influence the early detection of reactors contaminations. The mor-
phological parameters emerge due to its high loadings in all datasets
(Table 4). These results confirm that quantitative morphological
parameters should be considered in monitoring and control of
high-rate anaerobic reactors, especially those based on granular
sludge. Similar conclusions were obtained when high-rate anaero-
bic reactors were subjected to organic loading disturbances (Costa
et al., 2008).

3.2. Differentiate the shock loads

A PCA in a dataset integrating all available information was per-
formed in order to highlight differences between the shock loads.
Watching at Fig. 2a three clusters, one for each shock load, can
be perfectly distinguished. The cluster encompassing the SL2 sam-
ples is isolated from the others. Effectively, SL2 caused the most
negative effects to the anaerobic granular sludge, since it was the
only one where the COD removal efficiency decreased significantly
during the exposure phase.

The score and loading plots of PC1 and PC2, t[1] vs. t[2] and p[1]
vs. p[2] (Fig. 2), show the variables with higher influence in each
shock load. SL1 was characterized by an increase in TL/VSS and
LfA. The decrease of Efficiency (Eff) and SAA and increase of gran-
ules density describe SL2. Regarding to SL3 it was categorized
mostly by the granules D4 ranges >1 and >0.1, sign of granules
fragmentation.

Searching for possible correlations between variables, it is pos-
sible to observe a high positive correlation between the total fila-
ments (TL/VSS) and the dynamic of filaments per area of
aggregates (LfA) (Fig. 2b). This was already postulated by Costa
et al. (2008), suggesting that the granules microstructure stabiliza-
tion, by locking the filaments inside the aggregates, play a more
important role in the maintenance of a high efficiency than gran-
ules macrostructure/size stabilization.

During the shock loads was observed that LfA increased 3, 5,
and 2 days before effluent volatile suspended solids, respectively
in SL1, SL2, and SL3. It was hypothesized that LfA could be an
early-warning indicator of washout events (Amaral et al., 2004;
Costa et al., 2007, 2008). In Fig. 2b is visible that LfA and VSS are
inversely proportional, enhancing the hypothesis that LfA increases
before VSS, decreasing afterwards when VSS increases.

The detergent caused specific acetoclastic activity inhibition
and COD removal efficiency deterioration only in SL2 (high concen-
tration and exposure time). Regarding to solvent, a decrease of COD
removal efficiency occurred only when the biomass was saturated,
more than 200 h after the shock load began. Anaerobic biomass can
acclimate to toxic compounds and recover from inhibition as long
as the toxicant concentration is below a threshold level (Tepe et al.,
2006). Therefore, strategies that make the contaminants concen-
tration entering in the reactor lower, for example increasing the
dilution rate, should be implemented after toxic state recognition
to overcome/minimize the possible problematic contamination of
the process.

4. Conclusions

The PCA allowed the visualization of the main effects caused by
the toxics, by clustering the samples according to its operational
phase, exposure or recovery.

In SL1 (1.6 MEqetergent L~1) and SL3 (40 mgovent L 1), changes in
micro and macrostructure of the granules were observed, although
the reactors performance was virtually unaffected. In SL2
(300 mggetergent L~1) the morphological changes were detected in
the morphological parameters before the detection of a decrease
in the reactor efficiency. The new latent variable t[1], defined as
an weighted sum of all variables included in the dataset, showed
a variation of 262%, 254% and 80%, respectively, in SL1, SL2 and
SL3. The high loadings/weights of the morphological parameters
enhanced the usefulness of monitoring the solid phase of the
anaerobic digestion process (biomass), in order to achieve an effec-
tive and timely control. It was showed that PCA allowed the differ-
entiation of the several shock loads.
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